Differentatating in $\mathrm{math}_{\text {ath }}$ Clase

Ann Gaffney

Londonderry Middle School and Rivier University Presented to: Wilmington (MA) Public Schools

November 4, 2014
gaffneyedcons@gmail.com

What is Differentiation?

- Organizing learning experiences so that ALL students are productively engaged in building new knowledge.

Two Charges of Differentiation
 (according to Rick Wormeli)

- Do whatever it takes to maximize students' learning instead of relying on one-size-fits-all, whole-class method of instruction.
- Prepare students to handle anything in their current and future lives that is not differentiated, i.e., to become their own learning advocates.

Wormeli, R. (2007). Differentiation: From planning to practice, grades 6-
12. Portland, ME: Stenhouse Publishers. p. 9.
© 2014 Gaffney Educational Consulting.
achers may use and reproduce when there is no financial gain. Credit must be given.

Three Differentiation Strategies for Math Clase

1. One problem, multiple concepts
2. One problem and concept, different conditions
3. Different problems, same concept
© 2014 Gaffney Educational Consulting.
Teachers may use and reproduce when there is no financial gain. Credit must be given. 6

Skating Varialles, cont.

- The table below shows the values of a, b, and c that I gave you (or you found) and the resulting value of n, where n stands for the number of skaters when the costs are the same:

\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{n}
4	2	5	6
10	4	2	1
8	1	3	0.5
3	2	5	No solution
5	4	10	-12
3	5	6	$7 \quad 1 / 2$

© 2014 Gaffney Educational Consulting.
Teachers may use and reproduce when there is no financial gain. Credit must be given.

Daing Skating

- Solve the following problem at least three different ways:
- You are going ice skating with some friends for your birthday. You and two of your friends own skates; the rest of your friends must rent. At Ice Kingdom you would pay $\$ 5$ per person and another $\$ 3$ per skate rental. At Cool Palace they charge $\$ 7.25$ per person but rentals are included. Where should you go for your party?
- Can you find a fourth method? A fifth? ... How many methods can you find?
© 2014 Gaffney Educational Consulting.
Teachers may use and reproduce when there is no financial gain. Credit must be given.

Bkating Uaindeces

- Solve the following problem using [insert your strategy of choice here]:
- You are going ice skating with some friends for your birthday. You and two of your friends own skates; the rest of your friends must rent. At Ice Kingdom you would pay \$a per person and another $\$ \mathbf{b}$ per skate rental. At Cool Palace they charge $\$ c$ per person but rentals are included. Where should you go for your party?
- You will be given a sticky note with your values of a, b, and c.
© 2014 Gaffney Educational Consulting.
Teachers may use and reproduce when there is no financial gain. Credit must be given.

Least Common Multiple

- Find the least common multiple of a and b, when ... [you will get a sticky note with your values for a and b].
- In your group determine: What pairs of values could you give students?
- Consider:
- Are the pairs of values getting at the same idea even though they are different?
- Are the pairs of values different levels of complexity?

Strategy Three:
Different Problems, Same Concept

$\eta_{\text {legative }}$ P $P_{\text {ocitive }}=\eta_{\text {egative }}$

Problem 2: Groups of Negative Chips

- Create a chip board with four groups of 5 negative chips.

- What number sentence could you write for this chip board?
- What is the solution to the number sentence?

Negative x Positive $=$ Negative

Problem 4: Hops on a Number Line

- Draw a number line representing four hops of -5 each time.

- What number sentence could you write for this number line?
- What is the solution to the number sentence?

Negative x Positive $=\eta_{\text {negative }}$

Problem 1: Patterning
Examine the pattern. Fill in the blanks.

© 2014 Gaffney Educational Consulting.

- Credit must be given

$\eta_{\text {legative }} \times P_{\text {positive }}=\eta_{\text {egative }}$

Problem 3: Accumulated Deb \dagger

- You owe your mom \$5 every time you forget to do your weekly chores.
- You forgot to take out the trash for the last 4 weeks straight.
- How much money have you accumulated?
and may use and re il Consulting

$\eta_{\text {Negative }}$ P $P_{\text {ocitive }}=\eta_{\text {negative }}$

- What do the four problems have in common?
- patterning
- groups of negative chips
- accumulated debt
- hops on a number line
- Can you develop other problems that get at the same core concept?
- How might you choose which problem to use when?
© 2014 Gaffney Educational Consulting.
Teachers may use and reproduce when there is no financial gain. Credit must be given.

The Jake-Alome Message

- We explored three strategies for differentiating in math class:
> One problem, multiple concepts
> One problem and concept, different conditions
> Different problems, same concept
- Differentiating learning experiences ensures that all learners can engage productively with math content

Resources

- Today's presentation handout: tinyurl.com/Wilmington2014
- Email me: Ann Gaffney at gaffneyedcons@gmail.com

