Examining Student Work for

Mathematical Thinking
(grades 3-8)
Ann Gaffney
Londonderry Middle Schod and Rivier University
Presented to: Sacred Heart, Hampton March 4, 2016
gaffneyedcons@gmail.com

Examining Student Work

Why, when adding and subtracting decimals, must you line up the decimal points? You may use pictures to help you explain, but you must also explain in words.
© 2016 Gaffney Educational Cons uing.
Teachers may use and repor iuce when there is no finandial gain. Credrl must be given.
eachers may useand re poducewhen there is no finandial gain. Cre dil must be given.

2. A $5^{\text {th }} / 6^{\text {th }}$ grade fractions writing prompt
3. Student-generated calculation methods
4. MARS formative assessme nt tasks (you choose your grade level and task)
5. Wrap-up
© 2016 Gaffiney Educational Cons uting
eachers may useand reproducewhen there is no financial gain. Cre ditmustbe given.

Student Thinking

- All 3 students could add decimals correctly.
- The differences were in their level of thinking about the problem conceptually.
- Student thinking tells us about student understandings and student misconceptions.

Student Thinking

- Jennifer has a misconception. What is it?
- Jennifer is confused about the whole. Is one cookie the whole or is the group of cookies the whole?
- Student thinking tells us about student understandings and student misconceptions.
© 2016 Gaffney Educational Cons liting.
Teachers may useand reporduce whenthere is no finandal gain. Credir must be given.

A Fractions Writing Prompt

Explain why $5 \times 5 / 6$ equals $41 / 6$.
You may not use the algorithm to explain. You must explain why the answer actually makes sense.

In groups of 2-3, examine the index cards and discuss the questions on the back.
© 2016 Gaffney Educational Consuting.
Teachers may useand repoducewhen there is no finanaial gain. Cre dir mus the given.
10

Student-Generated Calculation Methods

(Mostly student-generated anyway....)

- Posted around the room are studentgenerated calculation methods. All of these methods DO work.
- Begin anywhere. Look at each method and try to figure out what the student was thinking.
- Can you figure out why each method works?
© 2016 Gaffney Educational Consuling.
Teachers may useand reproduce when there is no finandial gain. Credr must be given.

Why do these methods work?
© 2016 Gaffney Educational Consuling.
Teachers may use and repoducewhen there is no finandial gain. Credit mus the given

H	126×48
	$=252 \times 24$
	$=504 \times 12$
	$=1008 \times 6$
	$=6,048$

L	
	$2 / 3 \div 4 / 5=$
$10 / 15 \div 12 / 15=$	
$10 / 12=$	
$5 / 6$	

Other methods

 you have seen....
Why do we care?

Why do we care?

- Diverse populations mean diverse algorithms.
- Student-generated calculation methods allow us to see their thinking.
- Asteachers we must evaluate students' computation methods for their validity.
- Other algorithms may be equally as efficient as the traditional ones.

Honor differences, develop shared understandings...

- Altemative and student-generated calculation methods are not necessarily wrong, and should be judged according to:
- Applicability
- Efficiency
- Student understanding and facility with al gorithm

>Always teach the traditional algorithms to mastery while honoring alternative methods!

@ 2016 Gaffiney Educational Consuling.
Teachers may useand repoducewhenthere is no finandal gain. Credit must be given. 29

Examine a MARS Task

(MARS - Mathematics Assessment Resource Service)

These analyses of student work and resources for teachers available on the Inside Mathematics website: www.insidemathematics.org

Examine a MARS Task

1. Find a group of $3-4$ from the same grade level.
2. Send a representative to choose a task.
3. Peruse the packet to see what is inside.
4. Discuss the student work.

What do you notice about student understandings and misunderstandings?

The Take-Home Message

- We can "see" students' thinking in their written work and calculation methods
- Examining student work for student thinking allows us to see:
> student understandings
> hidden misconceptions

Resources

- The MARS Assessment Tasks used in this workshop are free to download from the Inside Mathematics website: www.insidemathematics. org
- Today's presentation handout: tinyurl.com/SacredHeartMath2016
- Email me: Ann Gaffney at gaffneyedcons@gmail.com

